Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2110.04932v1

ABSTRACT

The construction and application of knowledge graphs have seen a rapid increase across many disciplines in recent years. Additionally, the problem of uncovering relationships between developments in the COVID-19 pandemic and social media behavior is of great interest to researchers hoping to curb the spread of the disease. In this paper we present a knowledge graph constructed from COVID-19 related tweets in the Los Angeles area, supplemented with federal and state policy announcements and disease spread statistics. By incorporating dates, topics, and events as entities, we construct a knowledge graph that describes the connections between these useful information. We use natural language processing and change point analysis to extract tweet-topic, tweet-date, and event-date relations. Further analysis on the constructed knowledge graph provides insight into how tweets reflect public sentiments towards COVID-19 related topics and how changes in these sentiments correlate with real-world events.


Subject(s)
COVID-19
2.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2107.01713v1

ABSTRACT

During the COVID-19 pandemic, conflicting opinions on physical distancing swept across social media, affecting both human behavior and the spread of COVID-19. Inspired by such phenomena, we construct a two-layer multiplex network for the coupled spread of a disease and conflicting opinions. We model each process as a contagion. On one layer, we consider the concurrent evolution of two opinions -- pro-physical-distancing and anti-physical-distancing -- that compete with each other and have mutual immunity to each other. The disease evolves on the other layer, and individuals are less likely (respectively, more likely) to become infected when they adopt the pro-physical-distancing (respectively, anti-physical-distancing) opinion. We develop approximations of mean-field type by generalizing monolayer pair approximations to multilayer networks; these approximations agree well with Monte Carlo simulations for a broad range of parameters and several network structures. Through numerical simulations, we illustrate the influence of opinion dynamics on the spread of the disease from complex interactions both between the two conflicting opinions and between the opinions and the disease. We find that lengthening the duration that individuals hold an opinion may help suppress disease transmission, and we demonstrate that increasing the cross-layer correlations or intra-layer correlations of node degrees may lead to fewer individuals becoming infected with the disease.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.04741v1

ABSTRACT

We present three data driven model-types for COVID-19 with a minimal number of parameters to provide insights into the spread of the disease that may be used for developing policy responses. The first is exponential growth, widely studied in analysis of early-time data. The second is a self-exciting branching process model which includes a delay in transmission and recovery. It allows for meaningful fit to early time stochastic data. The third is the well-known Susceptible-Infected-Resistant (SIR) model and its cousin, SEIR, with an "Exposed" component. All three models are related quantitatively, and the SIR model is used to illustrate the potential effects of short-term distancing measures in the United States.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL